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Article history: Layout algorithms provide an intuitive way of visualizing and understanding complex
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Received inrevised form 25 September 2020 protein interaction networks often display community structures. Existing network
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Keywords: exploit community structures, leading to layouts with intertwined nodes/edges or
Network visualization “hairball” issues, especially when the size and complexity of networks increase. This
Community detection paper generalizes the force-directed framework and proposes a new method for network
Modularity ) visualization exploiting community structures. The approach, entitled GRA (Generalized
Graph compression Repulsive and Attractive algorithm), first discovers communities using community

Visualization metric

- detection mechanisms and then computes weighted repulsive and attractive forces
Force directed

between intra- and inter-community nodes. GRA simulates the nodes in a network as
particles and moves them based on repulsive and attractive forces until convergence. The
method is also extended to visualize larger-scale graphs by using detected communities
to compress the original graph. To quantify the effectiveness of network visualization,
an area estimation method based on a multivariate Gaussian distribution with noise
tolerance is introduced. A layout with a high metric prevents the visualization from
entanglement while making as much full use of the canvas space as possible. Case
studies on complex networks of various types and sizes demonstrate that GRA achieves
state-of-the-art performance and facilitates complex network analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Many systems can be represented as complex networks, such as social networks, biological networks, and citation
networks, in which the nodes are entities or objects and the edges are relationships between nodes [ 1-3]. To understand
the structure of complex networks, layout algorithms are proposed to displace nodes of a network in proper positions
in a canvas. A visualization algorithm enables us to have an intuitive understanding of the graph structure in complex
networks. The existing classical visualization methods are mostly based on the force-directed algorithm, such as the
Kamada-Kawai spring model (KK) [4], and Fruchterman-Reingold spring model (FR) [5]. These algorithms work well
in small and sparse graphs. However, they cannot visualize the structure of networks clearly and may suffer from issues
of entanglement or “hairballs” [6], in some networks as illustrated in Fig. 1(a) and (b).
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Fig. 1. Visualization results on the Adjnoun Network [7]. (a) Kamada-Kawai spring layout [4]. (b) Fruchterman-Reingold spring layout [5]. (c) Force
Atlas2 layout [8]. (d) HQFD layout [9].

How should limitations of force-directed visualization algorithms be solved? Yi et al. [9] applied a quadtree to
accelerate the algorithm in the HQFD (high-quality force-directed) algorithm, preventing the physical model from falling
into local optimal minimums. Force Atlas2 [8] was proposed by utilizing the degree information of networks to adjust
the attractive and repulsive forces. However, these methods still fail to produce a reasonable layout, as shown in Fig. 1(c)
and (d). There is still a need for more effective visualization algorithms.

Notably, according to previous research, community structure is a common property in complex networks [1,2]. A
community is a group of nodes that are densely connected or highly related and have sparse connections or are less
associated with the rest of the groups [2,10]. Typical community structures include the peer community, the core-
periphery community, and the multicore community, as shown in Fig. 2. A complex network can be divided into several
basic communities as shown in Fig. 3. Since a network can be decomposed into communities, as long as structures that
are within and between communities are clearly visualized, the network will be well displayed.

Generally, nodes in the same community tend to be clustered together and should be placed closer in a layout. The
nodes in different communities are far away, and they should be far apart in visualization. A good visualization method
for community structured complex networks can uncover how nodes are organized inside a community and how different
communities are communicated. Moreover, fewer cross-links are expected in layouts [9].
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Fig. 2. Three typical community structures. Left: a peer community from an empirical network [11]. Middle: a core-periphery community from a
social information propagation network [12]. Right: a multicore community from the Karate Club Network [13].

Fig. 3. An example social network that can be decomposed into several communities of different types.

Leveraging the concept of community structures of complex networks, we can display the network structures more
clearly, as illustrated in Fig. 4. From the visualization in Fig. 4, we can find that the word “child” is closely related to
“mother” and the “bad” is close to “boy” in the green-colored community.

To achieve a better and effective complex network visualization, we explore community structures in visualization and
apply it in a generalized repulsive and attractive layout framework. Adaptive weighted attractive and repulsive forces
are applied to calculate forces within and between communities. Rather than visualization without using a particular
community detection method (e.g., force-directed layout algorithms), we target the combination of the force-directed
algorithm and community detection algorithm to improve the quality of graph visualization. Moreover, we extend our
method to visualize larger graphs utilizing a coarse graph based on detected hierarchical communities. A novel metric
is proposed based on the multivariate Gaussian distribution model to measure the overlapping areas of layouts and the
quality of complex network visualization. The metrics take both intra- and inter-community structure visualization into
consideration. The metric reflects how good a layout is to a certain extent and can be used as a reference for selecting
parameters in the GRA method. The experimental results in various types of complex networks demonstrate our method
performs better and yields more insights in visualizing the complex network structures than strong baselines.’

2. Related work
Most of the existing effective network visualization algorithms are based on the force-directed model, such as the

Kamada-Kawai spring model [4] and Fruchterman-Reingold spring model [5], HQFD [9] and Force Atlas2 [8]. The force-
directed model regards the nodes in the network as particles in a physical system with attractive and repulsive forces

1 The source code of the Java version of the GRA algorithm can be found at https://github.com/packagewjx/gephi/tree/gra, which is built on the
basis of Gephi. The Python version will also be released in the link.
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Fig. 4. Visualization on the Adjnoun network [7] by GRA layout.

that work on them. The algorithm produces a desirable placement of the nodes by minimizing the energy of the
overall system. The algorithm works well in small and sparse networks. However, it suffers from edge entanglement
or the “hairball” issue in large-sized complex networks of high complexity because of the complexity and small-world
phenomenon in complex networks [6]. Furthermore, a study found that organized structures facilitate the understanding
of the network structure [14]. However, only a few works focused on how to apply community structure into complex
network visualization.

There are some related works on visualization that are related to communities and are close to the works in our paper;
however, they aim at solving different problems or at different perspectives. One kind of method takes communities or
clusters as points or modules and then applies a force-directed model based on them. The LinLog model [15] is first
designed for producing a layout that separates different graph clusters, but the internal structure inside a cluster is
ignored. Bourqui et al. [16] extended the method of GRIP [17] and computed multilevel layouts using the force-directed
method in a top-down manner. This method considers the weighted graph distance to cluster nodes. To overcome the
drawback of the classical radar layout in representing group level visualization, multicircular sifting and edge crossings are
proposed by Baur et al. [18] to optimize both the vertex order and edge winding. Vehlow et al. [19] targeted visualizing
fuzzy overlapping communities. The overlapping nodes are placed between communities. The method visualizes the
communities by a circular layout, illustrating a simple solution that produces a clear sketch of entire communities;
however, the approach ignores the natural structure inside communities. This kind of method works well in certain cases
but fails to provide structures inside communities.

Another kind of method focuses on the local structure of networks or changes the structure of networks to produce
a meaningful visualization. Arlind et al. [6] tried to solve the “hairball” issue utilizing edge deletion in small-world
graph visualization and produced a clearer clustering structure in the coarse network; nevertheless, this approach caused
network information loss by removing parts of edges. The CFinder [20] visualizes small clique communities in biology
or social networks by the CPM community detection method [3], but it fails to provide a global view of the whole
network. Parveen et al. [21] applied a metric-based method that maps the network structure into a similarity space,
which enabled an efficient hierarchical graphical representation of large graphs while failing to produce an intuitive and
clear visualization of graphs.

The multiview method is also a popular method to provide visualizations at different levels of complex networks. Auber
et al. [22] found that many social networks are small-world networks with a multiscale nature and proposed a method to
identify the weakest edges in small-world networks and divide the network into smaller components. The method only
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works on relatively small networks. The HQFD [9] improves the calculation speed of the Fruchterman-Reingold spring
model [5] by the Barnes Hut tree [23] and is embedded into a multiview framework. However, this approach still suffers
from similar problems encountered in the Fruchterman-Reingold spring model [5] in some cases as shown in Fig. 1(d).

Several visualization works focus on practical implementation tricks rather than on the design of algorithms. The Force
Atlas2 is a fast force-directed algorithm that visualizes large graphs at a faster speed but still requires improvements
in terms of quality and structure details [8]. Spinelli et al. [24] developed a plugin to support cluster visualization in
Cytoscape. It represents a community as a clicking box that represents a community but loses the structure of the global
networks.

Our works focus on visualizing both local and global structures of networks by applying community detection in a
generalized repulsive and attractive layout framework. In regard to community detection, various algorithms have been
proposed to detect communities in networks, such as GN [1], CPM [3], Louvain [25], EAGLE [11] and MOHCC [26]. The
recent work [27] proposed a method for detecting building blocks, namely, groups of network nodes that are usually
found together in the same community, which can also be applied with our method in the future. Modularity is used to
measure and analyze how well a community division is represented [2]. We propose a metric to analyze the quality of
network visualization. Our visualization method, GRA, is based on Louvain [25], which is one of the fastest community
detection algorithms. However, GRA is compatible with other community detection algorithms. The experiments in the
paper demonstrated that by cooperating community influences into network visualization, the performance can be highly
improved.

3. Preliminaries
3.1. Network visualization

Before introducing the algorithm of GRA, we briefly introduce several expectations and objectives in the visualization
algorithm as follows:

e Minimizing the number of cross-linked edges.
e Nodes that are close in networks are placed close in the visualization.

To uncover the structure of community structured networks, we consider:

e The nodes inside a community are distinguished.
e Communities should maintain a distance from each other and not highly overlap with each other.
e The node connected with the other community is placed close to the connected community.

A network is noted as G = (V, E), where the V and E are the vertex and edge sets, respectively. The problem of
visualizing a network is cast as finding a position p; = (x,y); or p; = (X,y, z); for each node so that the structure of
the network can be clearly visualized. To further conduct community structured visualization, the structures within and
between communities are expected to be well displayed.

3.2. Community detection

In contrast to previous visualization algorithms that equalize each node, different weights are applied on the repulsive
and attractive forces between nodes based on certain strategies to produce favorable visualization. To calculate weights
on these forces, the community labels C; of the nodes are first prepared. The community division is expected to have a
high modularity Q = ﬁ v.wBow — ky %k, /2m)8(C,, Cy) [2], where A,,, denotes whether there is a link between node
v and w, and C, is the community label of v. The simple version of Q is ) _ e; — aiz, where e is the fraction of edges
between the community i and j, and a,-2 = ) ej is the probability that a random edge would fall into community i as
described in [28]. The community detection algorithm is based on Louvain [25]. Louvain first initializes small communities
and then merges the communities by maximizing the positive gain of modularity AQ. The AQ of moving a node i into a
community C employs the following formula.

Zin Ztot ki

i t2xkin D ki — 2 ki D 2 ki
= o ( o Y] [Zm (Zm) (Zm)]’ (1)

where ), is the sum of the edge weights inside community C, ), , is the sum of the edge weights incident to nodes
in C, k; is the sum of the edge weights incident to node i, k; j, is the sum of the edge weights from node i to nodes in C
and m is the sum of all the edge weights in the network.

AQ

4. GRA: Generalized repulsive and attractive model

Our algorithm takes each node as a particle, which is the same in force-directed algorithms. There is a repulsive force
between every two nodes and an attractive force within two nodes that have a connection or stay in the same community.
The repulsive force is calculated by: F.(p;, p;) = CK?/d(p;, p;), where the C regulates the relative strength of the repulsive
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and attractive forces, and d(p;, p;) is visualization distance between node i and j. C is set to 1.0 in this paper. K is the
optimal distance [5,29] and set to ,/S/N, where S is the area of the canvas and N is the number of vertexes. The attractive
force is measured by: I?"a(p,-, pj) = A *x K/d(p;, p;), where A is the weight of the edge between node i and j. If the graph is
not weighted, the A is set to 1.0. Then, the forces move the nodes and minimize the energy of the whole network until a
stable state is reached. According to previous works [5], a layout with a lower energy has a good visualization. The total
energy in the tth iteration is:

. (2)

E(t) = Z Fa(u, v)(u — v)wl(u, v) N Z Fy(u, v)(u — v)wi(u, v)

d(u, v) d(u, v)

veV—{u} uvekE

where w! and w! are the weights of the attractive and repulsive force between node u and node v, respectively, in t,
iteration. Giving different w! and w! values for forces requires a high computational complexity. To simplify the model,
forces between and within communities are given different weights. Therefore, w! is either set to 1.0 if two nodes are
inside a community or @ when a connection is between communities. To prevent nodes from moving away from the
network core area, w! is set to 0.99 x w!~! in practice. In addition, there are some constraints such as d(u, v) > 7 and
—L/2 <vx <L/2,-W/2 <v.y < W/2 in the canvas, where 7 is the minimum distance between u and v, v.x and v.y
are the x-axis and y-axis location of node v, and L and W are width and height of the canvas. In practice, for a canvas
with size of 1.0 x 1.0, the optimal number of nodes is approximately 150. Thus, the width and height of the canvas is
set to /N /150. The learning rate n also has a significant impact on graph visualization. We use a linear decay strategy,
n'+t1 = 0.95n¢, where 7' is the learning rate at tth iteration. A decayed learning rate is demonstrated to benefit the model
learning, as described in [30]. The model developed on the matrix operation is summarized in Algorithm 1.

Algorithm 1 GRA Algorithm

1: procedure GRA(alpha, iters, tol)

2 Get community division by COMMUNITY_DETECTION.

3: Lay out the network by REPULSE_ATTRACT.

4: end procedure

5. procedure REPULSE_ATTRACT

6: iter = 0, converged = False

7: Initial position matrix P or inherit from previous positions.
8

9

Calculate repulsive and attractive weights W.
while not converged and iter < iters do

10: Calculate distance matrix D by broadcastqand L2-norm from P.
11: Calculate displacement Disp += (?T(D) + Fy(W % D)

12: Energy = L2-norm(Disp)

13: Calculate AEnergy by Energy and the value in the last iteration.
14: P += Disp * n | Energy

15: Adjust learning rate 7

16: if AEnergy/Energy < tol then:

17: Converged = True

18: end if

19: iter +=1

20: end while

21: end procedure

22: procedure COMMUNITY_DETECTION

23: 1) Each node is given an initial unique community id.

24: 2) Calculate AQ by Formula (1) with neighbor communities for each community and merge the communities into
the neighbor community with the largest and positive AQ.

25: 3) Build a new coarser graph. Repeat step 2) until no communities are further merged, ending with a dendrogram.
Choose the best division according to modularity Q.

26: end procedure

4.1. Graph compression and multilevel visualization

The advantage of applying a community structure in visualization is that it naturally provides a way of graph
compression (i.e. graph coarsening [29]) and multilevel visualization [29]. If a complex network grows large, it is difficult
to be well visualized and is easily trapped at the local maximum energy. Therefore, we need to compress the networks
and give the multilevel visualizations of the entire complex network.

The procedure COMMUNITY_DETECTION in the Algorithm 1 produces a series of coarser or compressed graphs
{Go, G1, ..., G¢}. In practice, k is a small positive number. The coarse step continues until a graph with a small number
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Fig. 5. Results in the Football Club Network [10]. (a) Clustering Visualization, « = 0.0. (b) The Fruchterman-Reingold spring layout, « = 1.0. (c) The
community or clustering visualization in related works [16,19,22]. Groups in color represent different communities.

of nodes remains or |G;|/|G;_1]| is below a threshold (p < 0.75), which is similar to the work in [29]. The optimal layout
for the coarsest graph G, can be calculated easily. When the layout of the coarser graph G; is obtained, the graph G;_; is
restored by a certain strategy, named the Prolongation_Strategy in Algorithm 2. For larger graphs, the matrix in Algorithm
1 is replaced by the sparse matrix to substantially save memory and calculation costs.

The multilevel layout algorithm with graph coarse is as Algorithm 2:

Algorithm 2 The Multilevel Layout Algorithm

1: procedure MULTILEVEL_ALGORITHM(p, 1)

2 Get the coarsest graph G" and graph series {G'} by Algorithm 1.
3 Prepare prolongation mappings {M;}.

4 while not Gy do:

5: P! = Layout G; according to Repulse_Attract in Algorithm 1.
6 Pi=1 = PROLONGATION_STRATEGY(P!, M;, G;)

7 end while

8 Get final layout P° = Layout Gy according to Repulse_Attract in Algorithm 1.
9: end procedure

10: procedure PROLONGATION_STRATEGY(P', M;, G;)

11: for node nin G; do

12: Get mapped nodes M;[n] in G;.

13: if len(M;[n]) > 1 then

14: Place M;[n] around P;[n] by radius r.
15: else

16: Pi_4[n] = Pi[n]

17: end if

18: end for
19: end procedure

4.2. Visualization evaluation

The parameter « has a significant influence on the visualization results. When « is set to 0.0, the attractive force weights
between communities are small and the network visualization resembles the clusters in Fig. 5(a). The connections between
communities are easily perceived, while the local network structure within a community is not well presented and the
space of the canvas is not fully used. When « is set to 1.0, connections between some communities are not intuitively
visualized due to highly overlapped areas, as shown in Fig. 5(b). When the community is visualized as shown in Fig. 5(c),
the local structure within a community is not visualized. Thus, the choice of a good parameter of « that is able to balance
the two optimal objectives remains to be discovered.

From the view of community structured visualization, the objectives of community structured visualization are
maximizing the total areas of all the communities while minimizing the overlapping area between different communities.
It does not mean that the overlapping nodes are avoided since overlapping nodes or “noisy” nodes commonly occur in
complex networks [3], as long as the overlapping areas do not destroy the visualization of the network. Since our model
is based on physical force movements, the overlapping nodes are expected to be naturally placed between communities,
and the evaluation should be able to tolerate noise.
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Fig. 6. How the parameter « affects the total area S, and VQ.

Note that because the process of layout is not conductive to mathematical derivation, we cannot calculate the partial
derivatives of parameters and find the best parameters automatically. However, we can design metrics and provide
references for parameter selection to distinguish good and poor visualizations.

The total area and overlapping area of all the communities are marked as S; and S,, respectively. One candidate method
to evaluate the area of S; and S, is using a circle or ellipse to fit the nodes in each community. Then, we can easily calculate
the major/minor axis of an ellipse, as shown in Fig. 7(a). However, the layout algorithms can produce different shapes
of ellipses in various angles and cause deviations when estimating appropriate circles or ellipses for the communities, as
shown in Fig. 7(b). A proper metric with noise tolerated is expected. The Gaussian mixture model is a popular probabilistic
model for fitting normally distributed subpopulations in a whole population. A multivariate Gaussian mixture model is
parameterized by its means and covariances, and the mixture component weights. We applied the multivariate Gaussian
model to fit the position distribution of nodes in a community. Then, an ellipse is estimated by limiting nodes within the
belief area of u £ 2 * §. Leveraging the distribution and belief area, the “noisy” overlapping nodes are allowed and do not
have a significant influence on core area estimation of communities, as shown in Fig. 7(c). Compared with the method
without considering angles or distributions, our fitting method has the least overlapping area but still covers the core
area of a community.

KC

KC
pR) =) GNE | ju, i), wherein ) " ¢y =1 3)

i=1 i=1

N 1. . oL
Nx | i, Z) = x— )z '(x - Mz‘)) (4)

1
V(2| x| 2
In our method, a two-dimensional Gaussian model is built as in Eqs. (3) and (4). The model is learned by maximum
likelihood estimation given the observed data points. The Expectation-Maximization optimization is applied for learning
the Gaussian distribution as follows:

e In the Expectation-step, calculate the expectation of the component assignments for each data point given the model
parameters p, and §.

e In the Maximization-step, maximize the expectations calculated in the Expectation-step for the model parameters
and update the values  and 6.

e Repeat the above steps until the algorithm converges, producing a maximum likelihood estimate.

In our case, KC = 1 and ¢; = 1.0, and a multivariate Gaussian distribution is estimated for each community since the
community division is known.
The metric is named Visualization Modularity (VQ) in the paper with respect to modularity [2].

VQ =y S +(1—y)*(1-5/5) (5)

where S; is the total area of the communities and S, is the overlapping area between the communities. To produce a
better visualization, we try to increase S; while minimizing S,. In this paper, y = 0.5, which means the network structures
inside and between communities are weighted equally, and a is set to 2.0. The relationship between « and VQ is shown
in Fig. 6(a). As shown in Figs. 8(a) and 9(b), even though some overlapping nodes (marked in upper case letters) exist
between communities, the metric is still able to estimate proper ellipses for the communities. Some examples are selected
to demonstrate that VQ can reflect the quality of community-structured visualizations. An example that reflects how the
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Fig. 9. (a) « = 0.2, VQ is 0.74. (b) « = 0.3, VQ is 0.78 in the Football Club Network. (¢) « = 1.0, VQ is 0.72.

parameter influences the visualization of the Adjnoun Network [7] is represented in Fig. 8. The layout with a higher VQ
tends to have better performance in revealing the connections between the communities and maintains a clear structure
within communities. In the Football Club Network [ 1], when the alpha is set to 0.3, some communities entangled together,
e.g., community No.1 and community No.2 are highly overlapped in Fig. 8.

From Fig. 6(a), it can be seen that VQ increases relatively faster with « in the beginning and remains stable or
decreases after a certain « value. When parameter « is 1.0, the visualization results of GRA are similar to the Fruchterman-
Reingold spring [5]. Some small sparse networks, e.g., the Karate Club Network and the Lesmis Network [31], are easy
to be visualized and do not decrease with « after VQ has reached the peak values. The Fruchterman-Reingold spring
model performs good visualizations of those networks. However, for some complicated networks, including the Adjnoun
Network [7], the Celegansneural Network [32], and the Football Club Network [1], VQ is particularly sensitive to « and
decreases sharply after reaching the peaks (the detailed information about the networks is provided in Section 5). Our
model produces better visualizations than the Fruchterman-Reingold model [5]. We can select proper parameters based
on S; and S, since the curves are similar among different networks. However, the satisfactory level of visualization varies
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Table 1
The statistical information of the networks used in the paper.

Networks V| |E| Density Avg. shortest path

Adjnoun Network 112 425 0.07 2.53

Football Club Network 115 613 0.09 25

Karate Network 34 78 0.14 2.4

Dolphin Network 62 159 0.08 3.36

Lesmis Network 77 254 0.09 2.64

Celegansneural Network 297 2345 0.03 3.07

Skill Knowledge Graph 130 1210 0.14 2.19

Primary School Network 236 5899 0.21 1.86

Information Diffusion Network 191 514 0.03 2.61

Butterfly Similarity Network 832 6504 0.02 43

Retweet Network 255 376 0.01 3.8

LFR2500 2500 5377 1.7e—03 6.3

BA25000 25,000 24,999 8e—06 12.44

BA100000 100,000 99,999 2e—05 11.03

Table 2
The number of cross-links produced by visualization algorithms on the benchmark networks.

Networks Circular FR KK ForceAtlas2 HQFD GRA
Adjnoun Network 45070 16974 13208 12360 14998 12830
Football Club Network 102480 12982 13982 9524 10666 9044
Karate Network 1216 142 138 138 154 134
Dolphin Network 6710 476 634 468 522 440
Lesmis Network 5672 1958 1812 1614 2398 1376
Celegansneural Network 1307922 473990 287990 222150 358294 248296
Skill Knowledge Graph 473548 51248 55824 49370 75316 49408
Primary School Network 1005984 147812 177228 162330 136 322 137318

from person to person. For a network, the model can produce a good visualization at multiple alpha values, e.g., the
layouts are acceptable when « is set from 0.05 or 0.1 in the Adjnoun Network, as shown in Fig. 8 and « is set from 0.2
or 0.3 in the Football Club Network, as shown in Fig. 9.

5. Experimental results

The sizes and density of the networks used are summarized in Table 1. The networks will be introduced in detail in
later sections. The counts of cross-links of different visualization algorithms are calculated in Table 2. It can be seen that
in most cases, our method performs the best or very close to the best performance in these networks. The Force Atlas2
has slightly lower cross-links in some networks. The visualization quality is not always increased when cross-links are
decreased, as shown in Fig. 1. However, a terrible layout tends to have more cross-links.

5.1. Benchmark networks

Adjnoun Network: The Adjnoun Network [7] is an undirected network of common nouns and adjective adjacencies
in the novel “David Copperfield” by the 19th century English writer Charles Dickens. A node represents either a noun
or an adjective. An edge connects two words that occur in adjacent positions. The results in Fig. 1 show that our model
produces much better visualization than state-of-the-art models.

Football Club Network: The Football Club Network includes the American club members in universities and their
connections [ 1]. The visualization produced by our model is shown in Fig. 9(a). Nodes in different colors represent students
who come from different clubs. The shallow colored circles represent the Gaussian distribution, and the blue triangles
inside are the centers. Compared with the graph clustering visualization in Fig. 5(a), the layout of our model has a clearer
network structure visualization inside a community. From the visualization, we have a better recognition of how those
clubs are connected and who plays the role of connector between those clubs than that shown in previous visualization
methods. In our visualization, if a node has connections with other communities, it is placed toward those communities
or as an overlap outside the distribution circle; for example, the node A in the pink community. Even some nodes that
are not in the core area in the community, such as node A, B, C, D, and E, they still do not lead to a substantial crash in
visualization and have no large influence on understanding the data.

Celegansneural: This data set contains the graph of interconnections among the neurons in the Celegans nema-
tode [32]. Our visualization reflects that the cyan community has more connections to the blue community than the green
community. Compared with that of our method, the result of FR spring layout [5] does not clearly distinguish different
communities and how those community modules are connected (see Fig. 10).
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a b

Fig. 10. Results on the Celegansneural neural network. (a) FR spring layout [5]. (b) GRA layout.
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Fig. 11. (a) The Karate Network. (b) The Bottleneck Dolphin Network.

Karate Network: The Karate Club Network is a well-known network for testing community detection [13]. Since the
network is small and sparse, different types of algorithms are able to produce clear visualizations. In addition, the visual
modularity values between different algorithms are reasonably close. Our visualization result is shown in Fig. 11(a).

Bottleneck Dolphin Network: The Bottleneck Dolphin Network records the relationship and interactions between
different dolphins in New Zealand [33]. From the visualization in Fig. 11(b), we can clearly see that there are two large
communities. However, in one community, three small groups (blue, pink and brown communities) are formed, which
reveals the hierarchical structures inside some communities.

Lesmis Network: Les Misérables is a French historical novel by Victor Hugo, first published in 1862, which is
considered one of the greatest novels of the 19th century. The Lesmis Network is built in the paper [31]. A link is made
between two nodes (characters) if they co-appear in the novel. The node’s color represents the various subgroups to
which each character belongs. From the visualization, we can determine that there is a peer community in the brown
community and the yellow community in Fig. 12(a). The blue community is a core-periphery community.
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Fig. 12. (a) The Lesmis Network. (b) The Skill Graph Network.

X .

Fig. 13. Results of visualization in weighted networks. (a) The Butterfly Similarity Network (please zoom in for a better view). (b) The retweet
Network.

Skill Knowledge Graph: The computer related Skill Knowledge Graph is provided by the Dice website.2 The
graph indicates how different skills are connected in resumes in Fig. 12b. The cyan community, green community, blue
community are related to project management, Linux system, and test management skills, respectively. The Python skill
is highly related to many skills including Web Development, Data Science, Machine Learning, and Natural Language
Processing. In web development-related skills, the Python is connected to Django, Flask, Redis, Nginx, MongoDB, Javascript
etc., which are popular technologies in web development. Java is closely associated with J2EE, Spring and Hibernate. Our
visualization method helps to ascertain some intuitive insights about the data.

Butterfly Similarity Network: To show that the proposed method can also be applied to weighted graphs, we
visualize two weighted graphs; one is the Butterfly Similarity Network from the paper [34]. Nodes represent butterflies
(organisms) and edges represent visual similarities between the organisms. Visual similarities are calculated using
butterfly images. From the visualization shown in Fig. 13(a), we can see that the proposed method also works in weighted
graphs. Compared with that of the Fruchterman-Reingold spring method [5] (not presented due to space limitations), the

2 https://www.dice.com.
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C d

Fig. 14. Results of multiview visualization in a network with 2500 nodes.(a) The layout by GRA. (b) The local structure of communities in the layout
by GRA. (c) The layout by Force Atlas2 [8]. (d) The layout by HQFD [9].

layout by GRA has a clearer structure of how each specie of butterfly similar to other species. For example, the butterflies
within one species are more likely to gather together. There are more connections between species 4 and species 5 than
species 10. There is a small densely connected group in species 1. Some species, e.g., species 2, has much fewer connections
with butterflies from other species.

Retweet Network: Another weighted graph used in this paper is the Retweet Network from the paper [35]. We
construct a social relationship surrounding one user and record retweet interactions between the users. The edge weight
is the times of retweet from one user to the other. The edges are weighted and directed. We transform the directed
graph into an undirected graph by simply changing the type of directed edges into undirected. The edge weights are also
considered in the GRA. The node size in visualization represents their degree that contains information on social influence.
From Fig. 13(b), we can see that the nodes linked with higher weights are placed in nearer places than smaller weighted
neighbor nodes. By the visualization, one can simply ascertain the intimate friends who are more likely to interact. From
the visualization, we can also infer that the person with high social influence or more fans is more likely to retweet the
messages from high social influence people in social networks, but they rarely retweet messages from fans with low social
influence.

5.2. Larger graph visualization

In this section, we verify the performance of the proposed model on larger graphs. Compared with Force Atlas2
(Fig. 14(c)) and HQFD (Fig. 14 (d)) on a graph with 2500 nodes generated by the LFR [36] benchmark algorithm, GRA
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a o b

Fig. 15. Results of visualization on a network with 25, 000 nodes. (a) The layout by GRA. (b) The layout by FR spring [5].

Fig. 16. Results of GRA on the networks with 10, 0000 nodes. (a) The whole layout by GRA. (b) A part of the layout by GRA.

(Fig. 14 (a)) produces a clearer visualization on network structures both within a community and on connections between
communities. The layout produced by HQFD has many overlapping areas between communities, causing a global structure
of networks that is not clearly visualized. In ForceAtlas2, nodes in the same communities are clustered together, but
the structure within communities is not well represented. From the visualization by GRA, we can see both local and
global structures of networks and communities, as shown in Fig. 14(a) and (b). Our model can also be applied to complex
networks with 25,000 nodes, as shown in Fig. 15 and 100,000 nodes, as shown in Fig. 16. The networks are noted as
BA25000 and BA1000000 since they are generated by the BA scale-free network model [37].

5.3. Social interaction networks

There are ten classes and ten teachers in a primary school in France. The proximity-sensing infrastructure based on
radio-frequency identification (RFID) devices is deployed to collect data of contacts between students and teachers in the
primary school [38]. The challenge to visualize such kind of networks is that their nodes are densely connected. However,
even in this extreme case, our model is stable and produces a relatively clear visualization result. Compared with Fig. 17(a)
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Fig. 18. Visualization in the primary school network by GRA, « = 0.25.

of Fruchterman-Reingold spring, our method GRA in Fig. 17(b) produces few cross-edges between communities. The
network in Fig. 18 is the sparse network obtained by removing the link with less than 120 s. From the visualization, it
can be inferred that the classes in the same or closer grades are more likely to have a connection. For example, class 2B
is close to class 2A, 1B and 3A, while it has fewer connections with 5A and 4A. The community 1A can have some small
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Fig. 19. The visualization on the information diffusion network. (a) Layout by FR spring method [5]. (b) Layout by Force Atlas2 [8]. (c) The information
diffusion tree. (d) Layout by GRA and how information propagates across communities. Please zoom in for a better view.

dense groups. Moreover, the overlapping nodes or structural roles that serve as a correspondent between communities
are highlighted with the red triangles. In our visualization, the hierarchical structure inside a class can also be naturally
visualized. For instance, a small group with seven students (highlighted in red circle) is formed in the class 3B (Fig. 17(b).
The results have shown that our method can visualize both global and local structures of networks.

5.4. Information propagation visualization

To demonstrate that our visualization method is able to reveal community structures and facilitate social network
analysis, a real-world example of information propagation is introduced. The user social relationship networks are formed
by the following functionality in a Twitter-like platform: Sina Microblog. Users can post messages and retweet them
according to their interests; therefore, many cascades are formed similar to Facebook cascades [39]. One cascade is in
Fig. 19(c) from [12]. The node R presents the user who posts the original Microblog, while the rest of the nodes are the
users involved in forwarding the Microblog. We visualize both the relationship network and information diffusion tree
to discover how information propagates across different communities. Fig. 19(a) depicts a subgraph of the relationship
network of those users involved in the cascade visualized by the Fruchterman-Reingold spring layout [5]. Fig. 19(b) shows
the same network visualized by ForceAtlas2. Fig. 19(c) shows the visualization produced by GRA. It can be seen that
GRA produces a clearer layout that reveals how the communities are connected than that by the Fruchterman-Reingold
spring and ForceAtlas2. In visualization by GRA, we can easily understand how information diffuses among different
communities. In this case, users can follow multiple friends. For example, in Fig. 19(d), the node F is the followers of
both the hub node R in the cyan community and the hub node A in the green community. Therefore, node F can receive
original and forward Microblogs from R and A respectively. However, user F chooses to forward the Microblog posted by
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node R. This phenomenon commonly occurs in social information propagation since nodes in the different communities
can share similar interests to a certain extent or in some dimension. Furthermore, because node A in the green community
forwarded the information, the message is visible to some nodes (e.g., node C) in the blue community and thus forms
a deep propagation. Nodes A and D are referred to as structure holes in the paper [40], and they help the information
propagate wider and deeper. From the layout by GRA, we can have an intuitive understanding of how information travels
across different communities and what kinds of users lead to another outbreak of information propagation.

6. Conclusions and future works

The community structure is a significant property in complex networks and has various kinds of applications; however,
the property is rarely applied in improving current network visualization algorithms. To address the problem of layout
algorithms failing to uncover network structures clearly in some complicated cases, a generalized repulsive and attractive
model that is aware of community structure has been proposed to visualize the complex network. By exploring community
structures and giving proper repulsive and attractive force weights, a better layout of networks can be produced. Compared
with previous approaches, our method reflects the local and global structures of networks. Both structures within and
between communities are displayed. The detected communities are also applied in graph compression to improve the
speed and quality in processing relatively larger graphs. To quantify the quality of community detection and facilitate
parameter estimation, a metric is introduced based on a mixture of Gaussian distributions with a noise tolerance. Our
model has demonstrated predominant performance compared with strong baselines on many complex networks. The
experiments have shown that our model facilitates the analysis of different complex network tasks, such as revealing
how information propagates between different communities and how communities in social networks interact with each
other.

One of the limitations of the proposed method is that it cannot currently be directly be used on directed graphs or
dynamic graphs. In future work, the model can be extended to different directions. One direction is to visualize dynamic
communities and directed graphs. It is possible to adopt rich contexts and various relations and links for discovering large
heterogeneous networks. The other direction is to apply the Barnes and Hut tree to accelerate the speed of the algorithm.
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